
2019-09-18

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

hiren.patel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Local variables

2
Local variables

Outline

• In this lesson, we will:

– Introduce the need for temporary memory storage

• Local variables

– Describe initialization of local variables

– Learn the scope of local variables

– Describe assigning to local variables

• Use swap as an example

– See what is not assignable

– Look at the automatic assignment operators

• This includes auto-increment and -decrement operators

3
Local variables

Background

• Within a function, we have already seen one category of variable: the
function parameters

– The parameter takes the value of the argument passed to the
function

• It may, however, be necessary for the function to temporarily store
data while it is being executed

– The function will temporarily store data while it calculates what the
function should return

– When the function is finished, this temporary data is no longer
needed

– We call such temporary data local variables

4
Local variables

Example

• Suppose we want to author a function that returns the maximum
root of a quadratic:

// 2

// Return the maximum root of the polynomial ax + bx + c

double max_root(double a, double b, double c);

• To determine this, we determine the largest of the roots:

2 4

2

b b ac

a

  

2019-09-18

2

5
Local variables

Example

• Here is an inefficient implementation:
// 2

// Return the maximum root of the polynomial ax + bx + c

double max_root(double a, double b, double c) {

assert((a != 0.0) && ((b*b - 4.0*a*c) >= 0.0));

return max((-b + std::sqrt(b*b - 4.0*a*c))/(2*a),

(-b - std::sqrt(b*b - 4.0*a*c))/(2*a));

}

• Why is this inefficient?

– We are calculating b*b - 4.0*a*c three times

– We are calculating 2.0*a twice

6
Local variables

Example

• Whatever value b*b - 4.0*a*c evaluates to, we need to store that
value temporarily in memory

– We must specify the type of this temporary value

– Later, we will refer to that stored value with an identifier

– The identifier cannot be a keyword and should not be a reserved
word

• Declaration and initialization of local variables:

double two_a{2.0*a};

double disc{b*b - 4.0*a*c};

The type

The identifier
The initial value

7
Local variables

Example

• We can temporarily store the values in a local variables:

two_a and disc
// 2

// Return the maximum root of the polynomial ax + bx + c

double max_root(double a, double b, double c) {

// Calculate the discriminant

double two_a{2.0*a};

double disc{b*b - 4.0*a*c};

assert((a != 0.0) && (disc >= 0.0));

double sqrt_disc{std::sqrt(disc)};

return max((-b + sqrt_disc)/two_a,

(-b - sqrt_disc)/two_a);

}

8
Local variables

Declaring local variables
with initial values

• Any identifier that is not a keyword or a reserved word may be used
as a local variable

– Just like the compiler must know the type of a parameter, you must
also specify the type of a local variable

– The initial value is specified in braces

• The initial value of an integer type or floating-point type can be any
arithmetic expression

• The initial value of a Boolean type (bool) can be any logical

expression

– Examples:

unsigned int count{0};

double PI{3.1415926535897932};

bool found{false};

2019-09-18

3

9
Local variables

Casting initial values

• Suppose the initial value is the wrong type:
double x{42}; // treated as 42.0

int pi{3.1415926535897932}; // treated as 3

• Fortunately, there is a compiler warning for the second:
example.cpp: In function 'int main()':

example.cpp:10:27: warning: narrowing conversion of '3.1415926535897931e+0'
from 'double' to 'int' inside { } [-Wnarrowing]

int pi{3.1415926535897932};

^

– It still compiles and produces an executable file

• For bool,

– An integer 0 or floating-point 0.0 is interpreted as false

– Any other integer or floating-point value is interpreted as true

10
Local variables

Examples

• Consider this program that gives every item a default value
#include <iostream>

void with_initial_values(int m);

int main();

void with_initial_values(int m) {

int n{m + 5};

double x{2*m + 1.5};

bool b{m};

std::cout << n << ", " << x << ", " << b << std::endl;

}

int main() {

with_initial_values(42);

return 0;

}

The output is 47, 85.5, 1

11
Local variables

Declaring local variables
with default initial values

• Every type has a default initial value:

– The default value for an integer type is 0

– The default value for a floating-point number is 0.0

– The default value of a Boolean type is false

• If you want the default type, just use empty braces

– Examples:

int count{}; // 'count' is initialized to 0

double sum{}; // 'sum' is initialized to 0.0

bool found{}; // 'found' is initialized to 'false'

• It is always clearer for the reader if you provide the initial value

– It is clearer even if the initial value is the default

12
Local variables

Examples

• Consider this program:
#include <iostream>

void with_default_values();

int main();

void with_default_values() {

int n{};

double x{};

bool b{};

std::cout << n << ", " << x << ", " << b << std::endl;

}

int main() {

with_default_values();

return 0;

}

The output is 0, 0, 0

2019-09-18

4

13
Local variables

Declaring local variables
with no initial values

• It is even possible to not initialize a local value

– Examples:

int count;

double sum;

bool found;

– Whatever 0s and 1s are there are interpreted as the type you
specified

– Often, but not always, this will be 0, 0.0 or false

• Almost always, this will be a bad idea

– On one platform, the default value may be consistently zero

– On another, under different circumstances, the default value may be
some random value

14
Local variables

Examples

• Now, consider this program:
#include <iostream>

void with_no_initial_values();

int main();

void with_no_initial_values() {

int n;

double x;

bool b;

std::cout << n << ", " << x << ", " << b << std::endl;

}

int main() {

with_no_initial_values();

std::cout << "Pi = " << 3.14 << std::endl;

with_no_initial_values();

return 0;

}

15
Local variables

Examples

• Running this on ecelinux yields:
4196861, 9.88131e-324, 0

Pi = 3.14

6295680, 2.07323e-317, 0

• Running this on cpp.sh yields a different result

0, 0, 0

Pi = 3.14

0, 0, 0

• Running this on a Windows computer yields yet a different result
1627411690, 2.122e-314, 0

Pi = 3.14

1817066142, 5.26696e+213, 97

16
Local variables

Warning on initial values

• Apart from an embedded real-time systems where the wasted time
of an unnecessary initialization may actually cause a signification
delay…

...always initialize your variables,
even if it is with the default.

• If you think you have a scenario where it is not necessary…

...document why in the comments.

2019-09-18

5

17
Local variables

Multiple declarations

• Within the same block of statements, you may never declare a local
variable more than once

– The compiler will return an error—even if the value is the same

– For example:
int main() {

double x{3.2};

double x{3.2};

return 0;

}

– The error is
example.cpp: In function 'int main()':

example.cpp:3:12: error: redeclaration of 'double x'

double x{3.2};

^

example.cpp:2:12: error: 'double x' previously declared here

double x{3.2};

^

18
Local variables

Scope

• Local variables are meant to be temporary

– They have a well-defined lifetime

• The lifetime of a parameter is the function definition

– The block of statements defining the function

• The statements wrapped in braces { } in the function definition

– This lifetime is defined by the programming language and enforced
by the compiler

• The lifetime of a local variable

– Starts at the point at which it is declared, and

– Ends at the end of the inner-most block of statements in which it is
defined

19
Local variables

Example

• This function only prints those local variables that are in scope:
void f(int x) {

int a{0};
if (x < a) {

int b{1};
std::cout << a << "," << b << std::endl;

if (a + b <= x) {
int c{2};
std::cout << a << "," << b << "," << c << std::endl;

}

int d{3};
std::cout << a << "," << b << "," << d << std::endl;

if (x > a + b - d) {
int e{4};
std::cout << a << "," << b << "," << d << "," << e << std::endl;

}

int f{5};
std::cout << a << "," << b << "," << d << "," << f << std::endl;

}

std::cout << a << std::endl;
}

20
Local variables

Example

• The local variable 'a' is in scope throughout the function
void f(int x) {

int a{0};
if (x < a) {

int b{1};
std::cout << a << "," << b << std::endl;

if (a + b <= x) {
int c{2};
std::cout << a << "," << b << "," << c << std::endl;

}

int d{3};
std::cout << a << "," << b << "," << d << std::endl;

if (x > a + b - d) {
int e{4};
std::cout << a << "," << b << "," << d << "," << e << std::endl;

}

int f{5};
std::cout << a << "," << b << "," << d << "," << f << std::endl;

}

std::cout << a << std::endl;
}

2019-09-18

6

21
Local variables

Example

• The local variable 'b' is in scope only in the consequent block
void f(int x) {

int a{0};
if (x < a) {

int b{1};
std::cout << a << "," << b << std::endl;

if (a + b <= x) {
int c{2};
std::cout << a << "," << b << "," << c << std::endl;

}

int d{3};
std::cout << a << "," << b << "," << d << std::endl;

if (x > a + b - d) {
int e{4};
std::cout << a << "," << b << "," << d << "," << e << std::endl;

}

int f{5};
std::cout << a << "," << b << "," << d << "," << f << std::endl;

}

std::cout << a << std::endl;
}

22
Local variables

Example

• The local variable 'c' is even more restricted
void f(int x) {

int a{0};
if (x < a) {

int b{1};
std::cout << a << "," << b << std::endl;

if (a + b <= x) {
int c{2};
std::cout << a << "," << b << "," << c << std::endl;

}

int d{3};
std::cout << a << "," << b << "," << d << std::endl;

if (x > a + b - d) {
int e{4};
std::cout << a << "," << b << "," << d << "," << e << std::endl;

}

int f{5};
std::cout << a << "," << b << "," << d << "," << f << std::endl;

}

std::cout << a << std::endl;
}

23
Local variables

Example

• The local variable 'd' is restricted to the end of this consequent block
void f(int x) {

int a{0};
if (x < a) {

int b{1};
std::cout << a << "," << b << std::endl;

if (a + b <= x) {
int c{2};
std::cout << a << "," << b << "," << c << std::endl;

}

int d{3};
std::cout << a << "," << b << "," << d << std::endl;

if (x > a + b - d) {
int e{4};
std::cout << a << "," << b << "," << d << "," << e << std::endl;

}

int f{5};
std::cout << a << "," << b << "," << d << "," << f << std::endl;

}

std::cout << a << std::endl;
}

24
Local variables

Example

• The local variable 'e' is restricted to the block in which it is declared
void f(int x) {

int a{0};
if (x < a) {

int b{1};
std::cout << a << "," << b << std::endl;

if (a + b <= x) {
int c{2};
std::cout << a << "," << b << "," << c << std::endl;

}

int d{3};
std::cout << a << "," << b << "," << d << std::endl;

if (x > a + b - d) {
int e{4};
std::cout << a << "," << b << "," << d << "," << e << std::endl;

}

int f{5};
std::cout << a << "," << b << "," << d << "," << f << std::endl;

}

std::cout << a << std::endl;
}

2019-09-18

7

25
Local variables

Example

• The local variable 'f' is only defined to the end of its block
void f(int x) {

int a{0};
if (x < a) {

int b{1};
std::cout << a << "," << b << std::endl;

if (a + b <= x) {
int c{2};
std::cout << a << "," << b << "," << c << std::endl;

}

int d{3};
std::cout << a << "," << b << "," << d << std::endl;

if (x > a + b - d) {
int e{4};
std::cout << a << "," << b << "," << d << "," << e << std::endl;

}

int f{5};
std::cout << a << "," << b << "," << d << "," << f << std::endl;

}

std::cout << a << std::endl;
}

26
Local variables

Parameters as local variables

• You can consider a parameter to be a local variable of a function
where:

– The scope of the parameter is the entire function

– The parameter is initialized not within the function but by the value
of the argument passed when the function is called

• The function body cannot have a local variable declared that has the
same name as a parameter

27
Local variables

Using the same identifier

• There are specific circumstances where you can declare two different
local variables with the same identifier

– In general, this is a bad idea, and leads to poor programming practices

– One situation where it is permissible is if:

• A local variable is required in two or more consequent or alternative
blocks of a (possibly cascading) conditional statement

• That local variable serves the same or similar purposes in each of those
blocks

• Otherwise, please avoid using the same identifier twice in the same
function

28
Local variables

Scope

• If you define a local variable in one function, you cannot access that
local variable from another function

– The variable is local to the function it is defined in

• Reminder:

– If another function needs a value stored in a local variable, it should
be passed as an argument to the function being called

– If a local variable is required by the function that called the function
the local variable is defined in, the local variable should be returned

2019-09-18

8

29
Local variables

Assigning to local variables

• After we have initialized a local variable, it may be necessary to
change or update its value

– This is done through assignment using the binary assignment
operator =
variable_name = expression;

• Important: read this as
“The variable is assigned the value of the right-hand expression”

• As before,

– a numeric variable can be assigned an arithmetic expression

– a Boolean variable can be assigned a logical expression

• If the type of the expression differs, it will be appropriately cast

30
Local variables

Assigning to local variables

• The left-hand side of an assignment operator is never evaluated

– If you write

m = 3;

this says “assign the local variable m the value of 3.”

• The right-hand side, however, is always evaluated first before the
assignment is made; for example:

int m{42};

m = m + 1;

std::cout << m << std::end;

m is now assigned the value 43
– the value 42 is lost

31
Local variables

Assigning to local variables

• Once a local variable is assigned a new value, any reference to that local
variable will result in that new value until the local variable goes out of
scope

– Local variables can be assigned new values arbitrarily many times

• Once a local variable is assigned a new value, the previous value is lost—
there is no way to recover it unless you saved it elsewhere:

int main() {

int n{10};

int m{n};

n = 17;

std::cout << m << ", " << n << std::endl;

return 0;

}
This prints 10, 17

32
Local variables

Assigning to local variables

• Remember that a local variable is like a box on a piece of paper
where you record something

– Every time you refer to that box, you get exactly what is there

– If you change what is in the box, you then get the new value

– If you copy that value to another box, the value in that box hasn’t
changed

2019-09-18

9

33
Local variables

Swapping two values

• Suppose we have to local variables assigned 10 and 20, respectively

int m{10};

int n{20};

• How can we swap those two values?

– That is, how do we end up with n being assigned 10 and m assigned
20?

• You cannot simply assign one to the other:

int m{10};

int n{20};

m = n;

– Now, both m and n have the value 20, and the value 10 is lost

34
Local variables

Swapping two values

• We require a temporary variable:

int m{10};

int n{20};

int tmp{m};

m = n;

n = tmp;

35
Local variables

What is not assignable?

• To this point, only variables can appear on the left-hand side:

– Consider this program:
int main() {

int n{10};

10 = 17;

10 = n;

n + 1 = 20;

return 0;

}

example.cpp: In function 'int main()':
example.cpp:4:5: error: lvalue required as left operand of assignment
10 = 17;

^
example.cpp:5:5: error: lvalue required as left operand of assignment
10 = n;

^
example.cpp:6:8: error: lvalue required as left operand of assignment
n + 1 = 20;

^

36
Local variables

What is not assignable?

• The error messages constantly refer to requiring an lvalue

– Think if this as a left-hand side value

– The construct to the left-hand side of the assignment operator must
be something to which an assignment can be made

• The compiler does not solve problems for you:

– For example, this does not assign the value 43 to n:

n - 1 = 42;

• Always remember: = is the assignment operator;

it is not an equals sign

2019-09-18

10

37
Local variables

What does assignment evaluate to?

• Recall that every operator we have examined so far has a return
value—what does the assignment operator = evaluate to?

#include <iostream>

int main();

int main() {

int m{0};

std::cout << (m = 10) << std::endl;

std::cout << m << std::endl;

return 0;

} In both cases, the value 10 is printed

38
Local variables

What does assignment evaluate to?

• Assignment evaluates to the value that is assigned

• This allows the following construct:

double a{3}, b{4}, c{5};

a = b = c = 10;

std::cout << a << "," << b << "," << c << std::endl;

• Think of this as

a = (b = (c = 10));

– The local variable c is assigned 10, and 10 is the result

– Next, the local variable b is assigned 10, and 10 is the result

– Finally, the local variable a is assigned 10, and 10 is the result

All three values are assigned 10

39
Local variables

Do you really understand operators?

• What is assigned to a, b and c after this?

double a{3}, b{4}, c{5};

std::cout << ((a = 3*(b = 2*(c = a + 2*b*c - 1) + 7) + 2*b - 8*c + 131) - 100)

<< std::endl;

std::cout << a << ", " << b << ", " << c << std::endl;

• Important: Just because you can write code like this,

and just because you want to write code like this,

please do not…

…you’ll get a 0 in this course

Only ever use assignment as the first operator in a statement

40
Local variables

Do you really understand operators?

• If you had to write code like this, is this not clearer?

double a{3}, b{4}, c{5};

c = a + 2*b*c – 1;

b = 2*c + 7;

a = 3*b + 2*b - 8*c + 131;

std::cout << (a - 100) << std::endl;

std::cout << a << ", " << b << ", " << c << std::endl;

2019-09-18

11

41
Local variables

Automatic assignment operators

• The C++ programming language has further binary automatic
assignment operators that provide syntactic short-cuts :

• For each of these automatic assignment operators, the left-hand side
must be assignable (at this point, a variable)

– Here, “automatic” harkens back to its Greek root: automatos
meaning “acting of itself”

Assignment
Automatic

assignment
Name

a = a + 32 a += 32 auto-addition

b = b - 41 b -= 41 auto-subtraction

c = 2*c c *= 2 auto-multiplication

d = d/10 d /= 10 auto-division

e = e % 100 e %= 100 auto-remainder

42
Local variables

Automatic assignment operators

• Each of these binary operator evaluates to a reference to the left-hand
variable being assigned to

– This result can further be assigned to…

– What is the output of this program?

#include <iostream>

int main();

int main() {

int a{2}, b{3};

a += ((b += 5*7 + 11) *= 2) + 13;

std::cout << a << ", " << b << std::endl;

return 0;

}

43
Local variables

Automatic assignment operators

• Please, don’t use code like this: we present this so that you
understand how C++ works

– Always use these automatic assignment operators as a single
statement

int a{2}, b{3};

b += 5*7 + 11;

b *= 2;

a += b + 13;

• Originally, these automatic assignment operators helped guide the
compiler in generating assembly code

– Today’s optimizers don’t require this anymore:

Don’t be fancy, be clear

44
Local variables

Auto-increment and -decrement operators

• C++ has a more compact unary automatic assignment operators:

a = a + 1; a += 1; ++a; a++;

b = b - 1; b -= 1; --b; b--;

• These are the unary automatic-increment and automatic-
decrement operators

Evaluated result Name

++a
adds 1 to 'a' and evaluates to the variable 'a'

– with its new value
auto-pre-increment

a++ adds 1 to 'a' but evaluates to the original value 'a' auto-post-increment

--b
subtracts 1 from 'b' and evaluates to the variable 'b'

– with its new value
auto-pre-decrement

b-- subtracts 1 from 'b' but evaluates to the original value 'b' auto-post-decrement

2019-09-18

12

45
Local variables

Auto-increment and -decrement operators

• Again, these originally guided the compiler

– Today’s optimizers don’t require this anymore—don’t be fancy, be
clear

• These unary automatic operators should always be used as a single
statement

– In class, we will always use the pre- form: ++a and --b

46
Local variables

Thought experiment…

• What is the output of this program?
#include <iostream>

void f(int m);

int main();

void f(int m) {

int n; // Uninitialized!

std::cout << n << std::endl;

n = m;

}

int main() {

std::cout << "Hello world!" << std::endl;

f(42);

f(91);

f(150);

return 0;

}

The output is:
0
42
91

In an upcoming lesson, we will see why

47
Local variables

Summary

• Following this lesson, you now:

– Understand the need for local variables

– Understand how to initialize local variables and why this is
important

– Know that the scope of the local variable is within the block of
statements

– Understand how to assign to local variables

– Know so far what is assignable and what is not

– Know the automatic assignment operators and their behavior

48
Local variables

References

[1] Wikipedia,

https://en.wikipedia.org/wiki/Local_variable

[2] CODESDOPE

https://www.codesdope.com/cpp-scope-of-variables/

https://en.wikipedia.org/wiki/Local_variable
https://www.codesdope.com/cpp-scope-of-variables/

2019-09-18

13

49
Local variables

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

50
Local variables

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

